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Abstract. The TROPOMI spectrometer is the single payload of the Copernicus Sentinel 5 Precursor

(S5P) mission. It measures Earth radiance spectra in the shortwave infrared spectral range around

2.3 µm with a dedicated instrument module. These measurements provide CO total column densities

over land, which for clear sky conditions are highly sensitive to the tropospheric boundary layer. For

cloudy atmospheres over land and ocean, the column sensitivity changes according to the light path5

through the atmosphere. In this study, we present the physics-based operational S5P algorithm to

infer atmospheric CO columns satisfying the envisaged accuracy (< 15 %) and precision (< 10 %)

both for clear sky and cloudy observations with low cloud height. Here, methane absorption in

the 2.3 µm range is combined with methane abundances from a global chemical transport model

to infer information on atmospheric scattering. For efficient processing, we deploy a linearized10

two-stream radiative transfer model as forward model and a profile scaling approach to adjust the

CO abundance in the inversion. Based on generic measurement ensembles, including clear sky and

cloudy observations, we estimated the CO retrieval precision to be≤ 11 % for surface albedo≥ 0.03

and solar zenith angle ≤ 70 ◦. CO biases of ≤ 3 % are introduced by inaccuracies in the methane

a priori knowledge. For strongly enhanced CO concentrations in the tropospheric boundary layer15

and for cloudy conditions, CO errors in the order of 8 % can be introduced by the retrieval of cloud

parameters of our algorithm. Moreover, we estimated the effect of a distorted spectral instrument

response due to the inhomogenous illumination of the instrument entrance slit in flight direction to be

< 2 % with pseudo-random characteristics when averaging over space and time. Finally, the CO data

exploitation is demonstrated for a TROPOMI orbit of simulated shortwave infrared measurements.20

Overall, the study demonstrates that for an instrument that performs in compliance with the pre-flight

specifications, the CO product will meet the required product performance well.
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1 Introduction

Measurements of the atmospheric carbon monoxide (CO) abundance are needed with temporal con-

tinuity and global coverage to improve our understanding of tropospheric chemistry and long range25

transport (Levy, 1971; Logan et al., 1981; Shindell et al., 2006; Edwards et al., 2004). Vertically

integrated total column densities of CO can be inferred from satellite measurements of Earth re-

flected sunlight in the 2.3 µm spectral range of the shortwave infrared (SWIR) part of the solar spec-

trum. The retrievals deliver sensitivity to the tropospheric boundary layer using the first overtone

2-0 absorption band of CO between 2305 nm and 2385 nm. Under clear sky conditions, this spectral30

range is subject to little atmospheric scattering and most of the measured light is thus reflected by

the Earth’s surface. Therefore, SWIR measurements are sensitive to the vertically integrated total

amount of CO, including the contribution of the planetary boundary layer. This makes the SWIR

spectral range particularly suitable for detecting surface sources of CO from space.

With the launch of SCIAMACHY (Scanning Imaging Absorption Spectrometer for Atmospheric35

Chartography, Bovensmann et al., 1999) in the year 2002 on ESA’s Envisat satellite, global CO

SWIR measurements are available for the years 2003-2012 (Borsdorff et al., 2016). Also the MO-

PITT (Measurements of Pollution in the Troposphere, Drummond and Mand, 1996) instrument,

launched by NASA on board of the Terra satellite in 1999, measures atmospheric CO abundance

from the SWIR (Deeter et al., 2009). To ensure continuity of SWIR CO measurements in the future,40

new space-borne instrumentation is required. In this respect, the Sentinel 5 Precursor mission (S5P),

Veefkind, 2012), to be launched end of 2016, will extend these unique long-term global CO data sets

using measurements of the same spectral range and so bridges the data gap to the Sentinel 5 (S5)

mission scheduled for launch in the year 2020.

The S5P satellite, with a designed 7-year lifetime, will fly in a sun-synchronous orbit at 824 km45

altitude with an inclination of 98.7 ◦. It has the Tropospheric Monitoring Instrument (TROPOMI) as

a single payload, which is a push-broom imaging spectrometer with a swath of 2600 km. TROPOMI

will provide daily global coverage with a high spatial resolution of 7× 7 km2 at sub-satellite point.

It comprises two spectrometer modules, the first covering the ultraviolet, visible and near-infrared

spectral ranges and the second covering the shortwave infrared spectral range 2305–2385 nm with50

a spectral resolution of 0.25 nm and a spectral sampling distance of 0.1 nm. A typical SWIR trans-

mission spectrum is illustrated in the top panel of Fig. 1. It shows the total transmittance of solar

light along its path from the sun reflected at the surface towards the satellite. The transmittance is

simulated using the Beer’s extinction law. In this spectral range, the relevant absorbing species are

H2O its isotopologue HDO, CO and CH4, with the optical depth of CO generally much smaller than55

those of H2O and CH4. The SWIR spectrometer is designed for a minimum signal-to-noise ratio

of 100–120 in the continuum of the spectrum over land surfaces. Over the oceans under clear sky

conditions, the SWIR signal is too low due to the dark sea surface. So CO data processing is only

possible for cloudy ocean observations. Due to these unique mission characteristics, TROPOMI will
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allow for unprecedented observations of CO total column abundances to quantify its sources and60

sinks.

Fig. 1. SWIR spectral transmittance along the light path of the solar beam reflected at the Earth surface into

the instrument’s viewing direction. Simulations are performed for viewing zenith angle VZA = 0◦, and a solar

zenith angle SZA = 30◦, and by assuming a US standard atmospheric profile. From top to bottom, the figure

shows the total transmittance, the individual transmittances due to H2O (green line), HDO (purple line), CH4

and CO, respectively. The purple region indicates the spectral range 2315–2324 nm that is used for cloud

filtering, whereas the green area highlights the adjacent spectral range 2324–2338 nm, which is used to infer

CO total columns from the measurements. Note the different y-axis scale for the CO transmittance.

The Copernicus ground segment generates the CO total column data as part of the near-real-time

and offline data stream. Near-real-time products will be delivered within 3 hours after data acquisi-

tion. The full data quality will be achieved only for the offline data products, which are expected to

be available within a few days after acquisition. For both data deliveries, an efficient CO retrieval65

algorithm is required. Several fast algorithms were used to infer CO columns from SCIAMACHY

SWIR measurements, including the Weighting Function Modified-Differential Optical Absorption

Spectroscopy approach (WFM-DOAS, Buchwitz et al. (2007) and references therein), the Itera-

tive Maximum A Posteriori approach (IMAP, Frankenberg et al., 2005), the Beer Infrared Retrieval

Algorithm (BIRRA, Gimeno Garcı́a et al., 2011), and the Iterative Maximum Likelihood Method70

approach (IMLM, Gloudemans et al., 2009, and references therein). These algorithms retrieve verti-
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cally integrated CO column density over land and above clouds over oceans. Buchwitz et al. (2006)

and Gloudemans et al. (2009) use a priori methane information to characterize the light path through

the atmosphere.

Based on these concepts, Vidot et al., 2012 proposed the SICOR algorithm for the processing of75

CO total columns from S5P and S5 shortwave infrared measurements. The algorithm describes the

effect of clouds on the radiation field by an elevated Lambertian reflector of a fixed albedo, adjusting

the elevation height and the cloud coverage of the observed scene. This approach accounts well for

the effect of optically thick water clouds on the CO retrieval with biases < 3 % but introduces larger

biases for an elevated aerosol layer above bright surfaces as well as optically thin cirrus clouds in80

the upper troposphere. Here the photon path length is significantly enhanced due to photon trap-

ping between the aerosol or cirrus layer and the surface, which represents a clear drawback of the

approach. The study at hand analyses thoroughly recent advancements in developing the SICOR

algorithm, amongst others using a linearized two-stream radiative model to account for atmospheric

scattering. Here we give particular attention to the TROPOMI specific instrument aspects and we85

discuss the expected algorithm performance in the context of the operational data processing of the

S5P mission.

The paper is structured as follows: Sect. 2 describes the retrieval method including the basic

features of the forward model. More details on the linearized two-stream radiative transfer model is

given in Appendix A. In Sect. 3, we present the uncertainty analysis of the CO product with respect90

to atmospheric and critical instrument parameters based on generic measurement scenarios, whereas

Sect. 4 illustrates the TROPOMI CO data product for a simulated level-1b orbit ensemble. Finally,

Sect. 5 concludes the paper.
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Fig. 2. Probability density function (left panel) and cumulative probability density function (right panel) of the

difference ∆CH4 of one year of GOSAT observations (2010) minus the corresponding TM5 model simulations.

The figure differentiates between the contribution of ocean and land pixels (blue and green areas).

2 Retrieval algorithm

The TROPOMI CO retrieval algorithm infers information on the total amount of CO from SWIR95

measurements, focussing on clear-sky observations over land and cloudy observations over land and

ocean in the presence of low altitude liquid water clouds. Hence, data screening is required to filter

out observations with high and optically thick clouds. Subsequently, we utilize a physics-based re-

trieval approach to infer CO columns from SWIR measurements together with the atmospheric H2O

abundances, surface albedo and a spectral calibration of the measurement spectrum. The spectral ab-100

sorption by methane is used to infer information on atmospheric scattering by clouds and aerosols.

The theoretical baseline of our algorithm is described in the following.

2.1 Cloud filtering

To detect the presence of high, optically thick clouds, we infer the vertically integrated amount

of methane from measurements between 2315 and 2324 nm (see Fig. 1) using a radiative trans-105

fer model that neglects atmospheric scattering. The difference ∆CH4 between the retrieved CH4

column and a priori methane information coming from a chemical transport model indicates light

path modification, either shortening and enhancement, due to atmospheric scattering by clouds and

aerosols. If the difference exceeds a certain threshold, observations are rejected. The non-scattering

retrieval algorithm uses a standard least squares approach to infer the total column of CH4, CO, H2O110

and HDO together with a surface albedoAs, its linear dependence on wavelength, and a spectral off-

set. It is described in more detail by Scheepmaker et al. (2016).

Figure 2 shows the probability density function (PDF) and its cumulative distribution (CPDF)
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of the difference ∆CH4 between a non-scattering CH4 retrieval from observations of Greenhouse

Gases Observing Satellite (GOSAT, Kuze et al. (2009)) at the 1.6 µm band of the year 2010 over115

land and ocean and collocated CH4 columns from TM5 model simulations after optimization using

surface measurements (Houweling et al., 2014), relative to the model results. The maximum of

the ocean and land PDF is at small differences ∆CH4 , indicating a large number of scenes that

are affected only little by clouds. For about 80 % of all observations, the methane abundance is

underestimated by the non-scattering retrieval due to the presence of optically thick clouds. Here,120

the ocean PDF shows a relatively high probability for ∆CH4 between -20 % and -5 % due to the

presence of low stratiform clouds over ocean. For land pixels, this type of cloudiness occurs less

frequently. Finally, 20 % of all cases show an overestimation of methane by the non-scattering

retrieval indicating an effective pathlength enhancement. Although the effect of lightpath shorting

and enhancement may depend on wavelength, because of the spectral dependence of the surface125

albedo and the optical properties of the atmosphere, the GOSAT PDF of ∆CH4 provides a first

estimate of the corresponding TROPOMI PDF of methane retrievals at 2.3 µm. As a baseline for

our data selection, we accept all observations with |∆CH4| ≤ 25 %.

2.2 Forward Model

The physics-based retrieval of CO requires a forward model F that describes the measurement as a130

function of the atmospheric state including an appropriate description of atmospheric scattering,

y = F(x,b) + ey . (1)

Here, vector y has the spectral measurements between 2324 nm and 2338 nm as its components

(see Fig. 1), state vector x represents the parameters to be retrieved, b describes parameters other

than the state vector that influences the measurement but are not adjusted by the retrieval, and ey is135

the measurement error. The fit window compromises about optimal CO sensitivity, little interference

with water vapor and methane absorptions, and small forward model errors due to the assumed cloud

model. Moreover, the forward model is non-linear in the state vector x. Therefore, the inversion

problem is solved iteratively employing the Gauss-Newton method, where for each iteration step the

forward model is linearized by a Taylor expansion around the solution of the previous iteration xo,140

F(x,b) = F(x0,b) +
∂F
∂x

(x0,b){x−x0}+O((x−x0)2) . (2)

O(x2) indicates second and higher order contributions of the expansion.

The forward model F simulates the Earth radiance measurement by a spectral convolution of the

top-of-model-atmosphere radiance ITOA with the instrument spectral response function,

Fi = si ∗ ITOA =
∫
si(λ) ITOA(λ)dλ . (3)145
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Here, si describes the spectral instrument response of spectral pixel i with the assigned wavelength

λi and ITOA(λ) is simulated by a line-by-line radiative transfer model on a fine internal spectral

grid. This model requires a solar irradiance spectrum on the internal spectral grid as input, which is

inferred from the daily solar measurements of TROPOMI using the deconvolution approach by van

Deelen et al. (2007) and Wassmann et al. (2015).150

State-of-the-art radiative transfer models account for multiple scattering in multiple propagation

directions (streams) including the polarization of light. For our application, the computational effort

of such simulations is far too large and thus, approximation methods are required to accelerate the

forward model simulations. For this reason, we ignore atmospheric Rayleigh scattering, which con-

tributes less than 0.15 % to the total signal (Gloudemans et al., 2008), and use a numerically efficient155

two-stream scalar radiative transfer model to describe scattering by clouds and aerosols. The em-

ployed two-stream solver (2S-LINTRAN) calculates the amount of singly scattered light, whereas

the diffuse radiation is approximated by two, one upward and one downward, propagation direc-

tions of the radiance field. It is similar to the model by Spurr and Natraj (2011) and the numerical

implementation used for the S5P CO column retrieval is described in more detail in Appendix A.160

In the forward model, clouds and aerosols are represented by a scattering layer with a triangular

height profile, a centre height zscat and a fixed full width at half maximum of 2.5 km. In this case,

we can optimize the numerical efficiency of the two-stream solver using an aggregated vertical grid.

In a first step, we calculate absorption optical depth on a 1 km vertical grid accounting for the

pressure and temperature dependence of atmospheric absorption, and subsequently we combine the165

atmosphere layers above and below the scattering layer to one layer each by integrating the optical

depth. This significantly reduces the number of vertical layers in the radiative transfer simulation

(typically to less than 10), depending on the number of internal layers that are used to resolve the

height profile of the scattering layer. Finally, the micro-physical properties of the scattering layer

have to be known a priori and we chose a spectrally constant single-scattering albedo ω = 0.9 and170

an asymmetry parameter of the scattering phase function g = 0.7. Moreover, we use a simplified

wavelength-dependence of the extinction optical thickness of the scattering layer

τ(λ) = τ(λ0)
(
λ

λ0

)−α
, (4)

where the reference wavelength λ0 = 2331 nm is chosen at the centre of our fitting window and

α= 1.0 is the Ångström parameter.175

In spite of the efficiency of the radiative transfer solver, the numerical cost of the forward model

has to be reduced further for operational data processing. Therefore, we pre-calculate the molecular

absorption cross sections σ of CH4, H2O, HDO and CO as a function of pressure, temperature and

for a spectral sampling distance of 5 · 10−3 cm−1 from spectroscopic databases (Rothman et al.,

2009; Predoi-Cross et al., 2006) for CO and CH4 respectively, and from Scheepmaker et al. (2013)180

for water vapor and its isotopologues). From this data set, we derive cross sections by bilinear
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interpolation of the pressure and temperature for each individual retrieval layer followed by the

calculation of effective cross sections σeff per species on a coarser spectral sampling ki by the

generalized mean

σeff (ki) = m

√∫
Ti(k)σm(k)dk∫

Ti(k)dk
. (5)185

with a spectral sampling of 3·10−2 cm−1. Here, k represents wavenumber and Ti(k) is a normalized

symmetric triangular weighting function between spectral samplings ki−1 and ki+1 with a peak at ki.

Form= 1, Eq. (5) describes the arithmetic mean, which introduces significant forward model errors

in the retrieval for the envisaged spectral sampling. We performed retrieval experiments for different

values of m, where we achieved most accurate radiance simulations with CO retrieval biases < 1%190

under clear sky conditions for m= 0.85. Overall, the use of the effective cross sections speeds up

the forward model simulations by a factor of 6 compared to line-by-line calculations on the spectral

grid of the original spectroscopic database.

2.3 Inversion

The SWIR measurements are sensitive to the total amount of CO along the path of the measured195

light. For clear sky atmospheres and within the bounds of the measurement error, only the total

column of CO can be inferred from the measurement (Borsdorff et al., 2016) and no information is

obtained about the relative vertical distribution of CO. In the presence of clouds, the measurement

looses sensitivity to the amount of CO below the cloud. To properly account for this, a regularized

CO profile retrieval is required that accounts for the different sensitivity of the measurement to CO200

at different altitudes. For this purpose, we employ the Tikhonov regularization technique of first

order (Phillips, 1962; Tikhonov, 1963) embedded in the Gauss-Newton iteration scheme. For each

iteration step, the least square solution x̂ is given by

x̂ = min
x

{
||S−1/2

y (F(x)−y)||2 + γ2||L1x||2
}
. (6)

Here, ||·|| describes the Euclidean norm and Sy is the error covariance matrix of the measurement205

y, where we assume uncorrelated measurement errors. γ is the regularization parameter and L1 is

the discrete approximation of the vertical derivative operator. The state vector x contains the CO

profile xCO, which is expressed relative to a reference profile ρref

xCO = ρ/ρref . (7)

For the operational implementation, TM5 model fields are used to extract an adequate CO refer-210

ence profile. Besides the relative profile of CO, the state vector includes the water vapor column
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density for two isotopologues, cH2O and cHDO, the surface albedo As and its linear dependence on

wavelength ∆As, the effective cloud centre height zcld and the effective cloud optical depth τcld.

Furthermore, a spectral shift ∆λ is fitted to account for spectral calibration errors of the measure-

ment. To account for the CO sensitivity of the SWIR measurements in the inversion, we regularize215

the solution in Eq. (6) such that one degree of freedom for signal (DFS) of the retrieved CO profile is

inferred from the measurement. For Eq. (6), this corresponds to a regularization parameter γ→∞.

Borsdorff et al. (2014) showed that the solution of this minimization problem is identical to an

unregularized least squares approach,

x̂ = min
x
||S−1/2

y (F(x)−y)||2 , (8)220

where the state vector contains the total CO column instead of the CO profile:

c= Cρ =
∫
ρ(z)dz , (9)

with the corresponding altitude integral operator C . All other elements of the state vector remain

the same.

The solution of this least-squares problem is225

x̂ = Gỹ (10)

with

ỹ = y−F(x0) + Kx0 (11)

and

G =
(
KTS−1

y K
)−1

KTS−1
y . (12)230

Two important diagnostic tools can be calculated during the retrieval (Borsdorff et al., 2014), the

error covariance matrix Sx = GSyGT , which describes the effect of the measurement noise on the

retrieved parameters including correlations between those, and the column averaging kernel

Acol =
dĉ

dρtrue
, (13)

which indicates the sensitivity of the retrieved column ĉ to changes in the atmospheric CO profile.235

Here, we provide the column averaging kernel for the CO profile given by its partial columns of
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each model layer. In the linear approximation, the column averaging kernel relates the retrieved CO

column to the true CO profile by

ĉ= Acolρtrue + ex , (14)

with an error contribution ex. So, generally ĉ does not represent an estimate of the true column and240

the difference

enull = (C−Acol)ρtrue (15)

is called the null-space error of the inversion. This error can be interpreted as the effect of the

chosen reference profile on the retrieved CO column density (Borsdorff et al., 2014; Wassmann

et al., 2015). If the reference profile to be scaled by the inversion has the correct shape, the null245

space error vanishes and the retrieved column represents an estimate of the true column.

Referring to Eq. (14), we characterize the retrieval accuracy for simulated measurements by the

retrieval bias bCO, which is defined as the difference between the retrieved column and Acolρtrue

corrected for the retrieval noise gCOey ,

bCO =
ĉ−Acol ρtrue−gCOey

Acol ρtrue

. (16)250

Here gCO is the CO row vector of the gain matrix in Eq. (12) and ey represents the measurement

noise.

The inversion described so far focused on the regularization of the ill-posed retrieval of a CO profile

from SWIR measurements. The inversion remains vulnerable to other elements of the state vector

to which the measurements is insensitive for certain atmospheric circumstances. For example for a255

scene overcast by a optically thick cloud, the measurement is insensitive to the surface albedo. On

the other hand, for a clear sky observation the adjustment of the surface albedo is required but the

measurement is insensitive to the height of a possible cloud layer. Hence for these circumstances,

certain eigenvalues of the normal matrix
(
KTS−1

y K
)

approach zero, leading to singularities in the

inversion. To overcome this, we apply Tikhonov regularization of zeroth order to the relevant ele-260

ments of the state vector, namely

x̂ = min
x

{
||S−1/2

y (F(x)−y)||2 + γ2||Wx||2
}
, (17)

where W is a diagonal weighting matrix, which diagonal elements are one for all elements of the

state vector related to the scattering layer and the surface albedo, i.e. As, ∆As, zcld and τcld, and zero

else. This regularization mainly affects the inversion of cloud and surface parameters and its effect265
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on the retrieved CO column can be neglected. In this study, we have determined the regularization

parameter γ by numerical experiments (Vidot et al., 2012), which requires verification during the

instrument commission phase.

Finally, the non-linearity of the inversion is accounted by the Gauss-Newton iteration, where the

degree of convergence is defined as the difference in the reduced chi-squared χ2 between two con-270

secutive iteration steps and convergence is achieved when |χ2
n−χ2

n−1|< ε. The threshold value

of ε can only be determined in a reliable manner using real measurements during the commission-

ing phase of the S5P mission. In this study, we used ε= 0.5. For clear sky observations ignoring

the retrieval of a scattering layer, the Gauss-Newton scheme shows satisfying convergence proper-

ties. However, inferring cloud properties introduces significant non-linearity issues to the retrieval.275

Therefore to mitigate the risk of an unstable inversion, we reduce the step sizes of the inversion

during the first few iterations as described by Butz et al. (2012).

In summary, the operational S5P CO data product consists of (1) the CO vertically integrated

column density c, (2) the standard deviation σ of the CO retrieval noise characterized by the retrieval

error covariance matrix Sx and (3) the column averaging kernel Ac.280
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3 Sensitivity analysis

For individual CO observations, the Sentinel-5 Precursor mission envisages a product accuracy of

≤ 15 % and a precision of ≤ 10 % (Veefkind, 2012). In this section, we discuss the CO retrieval

sensitivity of our algorithm to forward model errors and a set of key atmospheric and instrument

parameters and compare these errors to the envisaged product uncertainties. To estimate the retrieval285

accuracy of our algorithm, we have generated synthetic measurements for generic test cases using

the S-LINTRAN radiative transfer model (Schepers et al., 2015). The model is a scalar plane-

parallel radiative transfer model that fully accounts for multiple elastic light scattering by clouds

and air molecules and the reflection of light at the Earth surface. The optical properties of clouds are

calculated using Mie theory. For ice clouds, the ray tracing model by Hess and Wiegner (1994); Hess290

et al. (1998) is used. Finally, we describe cirrus and clouds by their top and base heights, and cloud

optical thickness at 2315 nm. We assume that cirrus fully overcasts the observed scene, whereas

broken cloud coverage is addressed by the independent pixel approximation (Marshak et al., 1995).

Moreover, we assume the US standard atmosphere (NOAA, 1976) for the profiles of dry air density,

pressure, water and CO. The CH4 profile is taken from the European background scenario of Levelt295

et al. (2009).

The radiance spectra are perturbed by measurement noise from the TROPOMI noise model by

Tol et al. (2011) for an observed ground scene of 7×7 km2 and a telescope aperture of 6×10−6 m2.

The optical transmittance of the instrument is adjusted such that, for a spectral sampling of 0.1 nm,

a signal to noise ratio of 100 is achieved in the continuum of the spectrum for a dark reference scene300

(surface albedo As = 0.05, viewing zenith angle VZA = 0◦ and SZA = 70◦). The instrument noise

includes noise due to the thermal background, the dark current of the detector, the readout noise and

the analog-to-digital converter noise.

Figure 3 shows an example of the CO retrieval performance for simulated measurements with

increasing cloud coverage over land and a dark land surface with an albedo As = 0.05. It depicts305

the retrieval bias bCO, the retrieval noise σCO, and the column averaging kernel. The retrieval biases

increases to 2.3 % with increasing cloud fraction because deficits of our cloud model become more

relevant with increasing cloud coverage. At the same time, the retrieval noise of the CO column

decreases due to the gain in the measurement signal. The change of the retrieval sensitivity with

cloud coverage is clearly illustrated by the column averaging kernels shown in the right panel of310

Fig. 3. When the cloud fraction is greater than zero, the column averaging kernel starts to increase

above the cloud and at the same time decreases below the cloud and so reflects the effect of cloud

shielding on the retrieved column utilizing the profile scaling approach (Borsdorff et al., 2014).

Similar results were already presented by Vidot et al. (2012), who used a previous version of the

SICOR algorithm. In their study, clouds were accounted for in the retrieval by an elevated Lam-315

bertian reflector. This approach appeared to be appropriate to describe the effect of optically thick

clouds in the retrieval and similar small retrieval biases are achieved with the latest version of SICOR
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Fig. 3. Example of the S5P CO data product and its performance as a function of cloud fraction fcld. The

SWIR measurements are simulated for a scene partially covered by a cloud between 2 and 3 km with optical

depth τcld = 5, a surface albedoAs = 0.05, a solar zenith angle of 50 ◦ and a viewing zenith angle of 40 ◦. Left

panel: CO retrieval bias bCO. Middle panel: retrieval noise σCO. Right panel: column averaging kernel for

different cloud fractions as indicated in the legend.

described here. However, in case of an optically thin scattering layer above a bright surface, the pre-

vious version of SICOR (Vidot et al., 2012) could not account for any path enhancement of the

observed light due to light trapping between the scattering layer and the surface. In the study of320

Vidot et al. (2012), this shortcoming became clear when assessing the retrieval accuracy for opti-

cally thin cirrus above bright surfaces. This is the main reason why the two-stream radiative transfer

solver s used in the current algorithm, which approximates both transmission and reflection of a

cloud and so allows for photon trapping between optically thin clouds and a bright surface. In the

following, our analysis focuses on these new aspects of our algorithm.325

3.1 Forward model errors

The forward model of our retrieval introduces errors due to the accuracy of the two-stream model,

the neglect of atmospheric Rayleigh scattering and the description of clouds and aerosols by a single

triangular scattering layer. To elicit the impact of these approximations, we consider three generic

measurement ensembles for a clear sky atmosphere and for a cloudy atmosphere with optically thin330

clouds and cirrus.

Figure 4 shows the CO retrieval bias and the corresponding retrieval noise for simulated clear

sky measurements including atmospheric Rayleigh scattering with a variable surface albedo and a

variable solar zenith angle. Overall, the retrieval bias is small with -0.5 %≤ bCO ≤ 0.5 %. The

13

Atmos. Meas. Tech. Discuss., doi:10.5194/amt-2016-114, 2016
Manuscript under review for journal Atmos. Meas. Tech.
Published: 25 May 2016
c© Author(s) 2016. CC-BY 3.0 License.



Fig. 4. Retrieval bias bCO (left panel) and retrieval noise σCO (right panel) for the clear sky conditions (without

aerosol, clouds and cirrus) and for a viewing zenith angle (VZA) of 0 degree as a function of solar zenith angle

(SZA) and surface albedo As.

Fig. 5. Left panel: Retrieval bias in case of a cloud atmosphere. The CO bias is shown as a function of surface

albedo As and cloud fraction f for a cloud between 4 and 5 km altitude with optical depth τscat = 2 and a

VZA of 0 degree. Right panel: CO retrieval bias for measurements in presence of optically thin cirrus, which

overcasts the entire scene, as a function of surface albedo and cirrus optical depth that defined at 2300 nm.

retrieval noise increases from values < 1 % at high sun and for bright surfaces to≈ 11 % for low sun335

(SZA = 70◦) and low albedo (As = 0.03). This increase is governed by the signal strength and so by

the signal-to-noise ratio of the measurement.

To investigate the effect of photon trapping between clouds and the surface, Fig. 5 depicts the

CO bias for a cirrus layer between 9 and 10 km of varying optical depth as function of the surface

albedo. The light trapping effect at high surface albedo results in a CO biases bCO ≤ 0.5 %. For a340

cloud between 4 and 5 km altitude with a small optical depth τscat = 2, the CO bias reaches 1.5 %

with increasing cloud coverage.

Moreover, we investigated the implications of the retrieved cloud parameters being effective cloud

parameters, as retrieved from methane absorption lines with a height distribution that differs from
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Fig. 6. Retrieval bias bCO in cloudy atmospheres in case of strongly enhanced CO concentrations. Mea-

surement simulations are performed for a surface albedo As = 0.05, SZA and VZA of 50 and 0 degree and

for overcast sky with a cloud at 1–2 km altitude with an optical depth of τcld = 2 (pink) and τcld = 5 (blue).

Additionally, we consider a case of partially cloud cover with cloud fraction fcld = 0.1 at 4–5 km altitude with

τcld = 2 (yellow). The CO profile represents the US standard atmosphere with a perturbation at the indicated

altitude zper enhancing the total amount of CO by 50 %.

that of CO. Here, the cloud parameters do not reflect real cloud properties but adjust the simulated345

light paths such that the methane absorption features can be fitted by the forward model. This may

include erroneous light paths, which effects cancels out in the simulated measurement. Obviously,

this is only true for the particular height distribution of methane. For another trace gas with a

different vertical profile, such as CO, this may introduce biases in our retrieved column for cloudy

atmospheres. To quantify this error, we simulate SWIR measurements for a cloudy atmosphere350

adding CO abundance in a 1 km thick, vertically homogenous layer with a layer top height zper.

Here, the CO enhancement causes an increase of the CO total column of 50 %. Figure 6 shows CO

biases for scenes covered with low clouds at 1–2 km altitude with optical thicknesses of 2 and 5, and

a cloud at 4–5 km covering 10 % of the scene with a cloud optical thickness of 2. In each case, the

simulated measurement passes the cloud filter of Sect. 2.1. We clearly see a positive retrieval bias up355

to 5 % for enhanced CO concentration at the altitude of the optically thin cloud, whereas a negative
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bias of 7 % is found for low clouds in combination with a near-surface CO enhancements. The latter

error is relevant for burning events localized in the tropospheric boundary layer. Above the cloud,

the error sensitivity is only small, indicating that the light path at this altitude range is well described

by our simplified radiative transfer model. Furthermore, for the optically thicker clouds the error360

sensitivity is below 2 %, as expected for a primarily reflecting cloud.

3.2 Atmospheric parameters

An important element of the CO retrieval approach is the use of methane a priori information to

determine effective cloud properties from the SWIR measurements as discussed above. The SICOR

retrieval relies on simulated CH4 fields from the TM5 model (Krol et al., 2005), which have been365

used in several studies (e.g. Meirink et al., 2008; Bergamaschi et al., 2005, 2009). Via the inverse

modeling technique the sources and sinks of CH4 in the TM5 model are optimized by minimizing

the residual differences between model and measurements from the NOAA-ESRL global monitoring

network and deviations from the a priori surface flux distribution (Houweling et al., 2014). In the

following, we refer to these model runs as the TM5-NOAA simulations.370

To test the overall accuracy of the model simulations, we compare one year of CH4 model fields

with collocated GOSAT observations (Butz et al., 2009, 2010, 2011; Schepers et al., 2012). Here, the

GOSAT CH4 product is extensively validated with TCCON ground measurements with an overall

root-mean-square (RMS) difference of 15 ppb and a station-to-station bias of 3.5 ppb (Detmers and

Hasekamp, 2015). Within these boundaries, the GOSAT XCH4 retrieval can be used to estimate375

the model accuracy. To this end Fig. 7 shows the difference between GOSAT and TM5-NOAA

simulated XCH4. Over China, the largest biases of up to 3 % occur because of inconsistencies in the

underlying emission scenario in combination with a limited regional coverage of the NOAA-ESRL

ground-based measurements. Overall biases are smaller with an RMS difference between GOSAT

and TM5-NOAA, amounting to 20 ppb and increasing towards southern latitudes. This latitudinal380

bias in TM5, relative to GOSAT, is found also in other models (see e.g. Locatelli et al. (2015)) and

is currently under further investigation.

Comparisons of the modeled CH4 columns with collocated TCCON measurements are largely

consistent with these findings with an RMS difference between 8 and 22 ppb depending on the

TCCON site.385

Inherent to this analysis is the assumption that the NOAA-ESRL measurements are available

timely to perform model simulation as input to the retrieval. This timeliness of the simulation needs

further consideration. Commonly, inverse modeling derived estimates lag behind real-time by ap-

proximately one year. This is mostly due to the availability of various types of inputs that are

required, including meteorological fields, a priori emission estimates, and measurements. Due to390

that, we propose a modeling procedure that uses the inversion-optimized TM5 estimates of the dry

air mole column mixing ratio of methane XCH4 of the previous year. Obviously, the largest error

16

Atmos. Meas. Tech. Discuss., doi:10.5194/amt-2016-114, 2016
Manuscript under review for journal Atmos. Meas. Tech.
Published: 25 May 2016
c© Author(s) 2016. CC-BY 3.0 License.



Fig. 7. Difference between CH4 total column dry air mixing ratios from TM5-NOAA simulations and GOSAT

retrievals for the period June 2009 to December 2012.

source is the variability in XCH4 caused by the year-to-year variations in meteorology and the inter-

annual variability of the methane sources and sinks. We estimate the size of the error from results of

a multi-year inversion for the period 2003-2010, calculating how XCH4 on a given day of the year395

(15th of January, April, July and October) varied between the years. Largest variations are found

over South East Asia, due to large regional sources of methane, but also errors in the meteorology of

the northern and southern hemispheric storm tracks are present. On average, the standard deviations

are on average well within 1 % (18 ppb), regionally increasing up to 1.5 % (27 ppb). Sporadically,

standard deviations up to 3 % are found, associated with biomass burning events. Acknowledging400

these limitations in our approach, an uncertainty of 3 % of our methane a priori knowledge seems a

reasonable margin that should be achievable for most conditions encountered throughout the global

domain.

For the generic clear sky measurement ensembles, Fig. 8 shows the PDF of the CO biases as

a function of the methane model error between ±3 %. A linear regression through the data points405

indicates a nearly one-to-one error correspondence with 1.11 % CO bias due to 1 % error in the

methane model columns. Table 1 provides the corresponding bias sensitivity for the cloudy and

cirrus measurement ensembles in Fig. 5. Aggregating these results, we conclude that the CO retrieval

bias due to the uncertainty of the TM5-NOAA model input typically does not exceed 3 %.
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Fig. 8. CO bias due to a priori errors in CH4 for the clear sky measurement ensemble of Fig. 4. For each CH4

error, the CO bias probability function is shown. The CO error sensitivity is estimated by a linear regression

through all data points (solid line).

Additionally to the CH4 a priori error, an erroneous surface pressure affects the inferred CO col-410

umn both through a wrong conversion of the methane mixing ratio XCH4 into the total column

density of methane and via an erroneous spectroscopy because of the pressure broadening of indi-

vidual absorption lines. For the operational retrieval, we use pressure information from the European

Centre for Medium-Range Weather Forecast (ECMWF) with a typical accuracy of 2–3 hPa (Salstein

et al., 2007). Subsequently, ECMWF surface pressure is interpolated on the particular TROPOMI415

pixel by means of the digital elevation map of Farr (2007) and Danielson and Gesch (2011) account-

ing for the topography of the terrain. For pressure uncertainties in the range ≤ 3 hPa, we obtain an

error sensitivity of 0.11–0.13 % CO column error per 1 hPa surface pressure error for the clear sky

and cloudy scenarios of our generic measurement ensemble. Furthermore, we evaluated the impact

of uncertainties in the atmospheric temperature forecast of ECMWF, which has been estimated at a420

few Kelvin. Table 1 lists the CO retrieval sensitivities with respect to an offset of the atmospheric

temperature profile in the range±3 K, which vary between 0.17 and 0.23 % CO column error per 1 K

temperature offset. Thus for the CO column product, we expect the corresponding retrieval biases

due to inaccuracies in the atmospheric parameters to be well within 1 %.

3.3 Instrument effects425

Finally, we studied the CO retrieval sensitivity with respect to a set of instrument related parameters.

First, the Earth radiance spectrum may be subject to a radiometric offset Ioffset, expressed relative

to the radiance level at the reference wavelength of 2315 nm, or a spectrally constant multiplicative
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Table 1. CO column retrieval sensitivity in % with respect to knowledge uncertainties of a set of atmospheric

and instrument parameters for the generic clear sky, cloud and cirrus ensemble: (1) CH4 a priori uncertainty

of TM5-NOAA runs, (2) ECMWF surface pressure uncertainty, (3) ECMWF temperature profile offset, (5)

FWHM uncertainty of the ISRF, (6) spectral calibration error δs and (7) the radiometric offset Ioffset and a

multiplicative radiometric error Iscal of the level 1 data product.

# parameter clear sky cloud cirrus

1 CH4 a priori [%/%] 1.11 1.18 1.21

2 pressure [%/hPa] 0.11 0.13 0.13

3 temperature [%/K] 0.23 0.17 0.20

4 FWHM [%/%] 0.51 0.40 0.43

5 δs [%/10 pm] 0.88 0.87 0.87

6 Ioffset [%/%] −0.63 −0.47 −0.46

7 Iscal [%/%] 0.01 0.01 0.02

error δIscal. Instrumental reasons for these errors can be manyfold, e.g. uncorrected straylight,

detector and read-out electronics performance and an erroneous pre-flight instrument calibration.430

For the generic ensembles, we derived an error sensitivity of −0.47 to −0.63 % CO column error

per percent radiometric offset and 0.01 to 0.02 % per percent multiplicative radiometric error. The

main reason for this robust retrieval performance with respect to this type of radiometric errors is the

selected spectral window with relatively weak atmospheric absorption. Here, these spectral biases

can be mitigated efficiently by the retrieval of an effective surface albedo and cloud properties.435

To study an erroneous spectral calibration of the measurement, we assumed a correct instrument

calibration λi of spectral detector i and an erroneous calibration

λ′i = λi +
λi−λm
λr −λm

δs . (18)

Here, λr = 2385 nm indicates the longwave edge of the SWIR band and λm = 2345 nm is the spec-

tral centre. So, δs characterizes the spectral calibration errors at the edges of the SWIR spectral440

range whereas in the centre λm the calibration error vanishes. The corresponding spectral squeeze

for the CO fit windows (2315–2338 nm) is about one third of δs. The error sensitivity of the CO

column product is about 0.9 % per δs= 10 pm. Due to the required knowledge of the centre of all

SWIR channels of < 2 pm (Langen et al., 2011), this CO error sensitivity is not critical for a compli-

ant instrument. Moreover, the CO retrieval has no error sensitivity to an overall offset of the spectral445

calibration because this parameter is adjusted by the retrieval.

Errors in the instrument spectral response function can be manyfold and are hard to quantify in

a general manner. In this study, we restricted ourself to an erroneous full width at half maximum

(FWHM) of the instrument spectral response function (ISRF), which may occur e.g. because of pre-

flight instrument calibration errors or because of fluctuations of the instrument temperature. Table 1450
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shows the ISRF retrieval sensitivity of about 0.5 % CO error for a 1 % FWHM uncertainty of the

ISRF, the latter representing the knowledge requirement for the TROPOMI instrument calibration

(Langen et al., 2011).

Finally, we discuss the CO column error contribution originating from radiometric artifacts due

to the heterogeneous illumination of the instrument entrance slit, which in turn arises from varying455

cloud coverage and surface reflection within a spatial sample. As discussed by Noel et al. (2012)

and Caron et al. (2014) and in appendix B, this results in a distortion of the spectral response of the

TROPOMI instrument. Accounting for this effect in the retrieval requires, next to detailed charac-

terization of the instrument, a priori knowledge of the radiance heterogeneity across the instrument

slit, which is not available. For future instrument development, e.g. for the succeeding Sentinel-5460

mission of ESA, this instrumental effect is foreseen to be mitigated by a slit homogenizer (Caron

et al., 2014). This is an optical device scrambling the spatial information of the incoming signal in

the flight direction and so the spectrometer is effectively exposed to a spatially homogeneous en-

trance signal. Because the TROPOMI instrument is not equipped with such a device, it is important

to quantify potential errors on the CO data product.465

For this purpose, we considered two spatial ensembles of simulated measurements. First, we

investigated a MODIS Aqua cloud image over Australia shown in Fig. 9, characterizing clouds

by a cloud mask on a 1× 1 km2 spatial grid box. For each of the samples at a spatial position

(x,y), we calculated a spectral radiance field I(x,y,λ) assuming a ground albedo As = 0.1 and,

depending on the cloud mask, a vertically homogenous cloud between 2 and 3 km with an optical470

depth of τscat = 20. Next, we simulated the TROPOMI observations with the instrument model

in appendix B. Subsequent retrievals allows us to quantify the CO bias due to the distortion of

the instrument response for the ensemble. Results of this test (right panel of Fig. 9) show with a

characteristic CO bias pattern at cloud edges ranging from up to +2 % where the cloud edge enters

the instrument field of view, to minimum −2 % when the field of view points mainly at clouds475

and the scene heterogeneity is due to a remaining contribution of clear sky radiances. Although

this error contribution is significant, it has a quasi-random characteristics when looking at larger

spatial or temporal domains because of the quasi-random occurrence of clouds on these scales.

Additionally, we investigated a measurement ensemble for spatially varying surface albedo of a 50×
50 km2 wetland region in Siberia. The albedo distribution is adapted from MODIS Aqua observation480

at 2.1 µm with a spatial sampling of 500× 500m2 with a mean albedo of 0.037 and a standard

deviation of 0.017 (see Fig. 10) . The patchy structure of the figure is due to dark ponds of the

marsh. Figure 10 also shows a CO bias between ± 1.5 % related to the scene heterogeneity. The

mean error of the ensemble reduces to 0.05 % with a standard deviation of 0.44 %, supporting the

quasi-random characteristics of this error.485
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Fig. 9. Error due to heterogeneous slit illumination due to a cloudy scene over Australia, 12 February 2010.

Left panel: Cloud mask derived from MODIS Aqua observations at 1×1 km2 spatial sampling (green indicates

clear sky pixels, grey indicates cloud flagged pixels). Right panel: CO retrieval bias due to heterogeneous

illumination of the instrument entrance slit. The cloudy areas are indicated by the black contour line.

Fig. 10. Error due to heterogeneous slit illumination by a scene with varying surface reflection over a marsh

scene in Siberia close to the river Ob at latitude 62.8◦ N and longitude 72.1◦ E. Left panel: MODIS Lambertian

albedo at 2.1 µm with a spatial sampling of 0.5×0.5 km2. Right panel: CO retrieval error due to heterogeneous

illumination of the instrument entrance slit.
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4 Sentinel 5 Precursor orbit ensemble

To test the algorithm performance and the data product accuracy for more common circumstances

encountered in the operational processing, we have simulated a measurement ensemble for a typi-

cal TROPOMI orbit employing the noise model as described in Sect. 3. The simulations are based

on a dedicated Sentinel 5 Precursor orbit simulations for August with 13:30h equator crossing time490

providing pixel location and size as well as the solar and viewing geometry of the TROPOMI obser-

vation (pers. com. M. Sneep, Royal Netherlands Meteorological Institute, The Netherlands). Here,

we considered only pixels with SZA < 80◦, for which the TROPOMI instrument performance is

constrained by the mission specifications. In first instance, we spatially projected the trail ensemble

by Butz et al. (2010) for the same month to the test orbit to collocated CO and CH4 concentrations495

from TM5 (S. Houweling, SRON, private communication) and H2O from the ECMWF forecasts to

the individual TROPOMI pixels. Additionally, we use the aerosol properties from the ECHAM5-

HAM model (Stier and et al., 2005) and monthly mean MODIS observations (Remer, 2005). The

cirrus optical thickness is specified to match the CALIOP monthly median cirrus optical thickness

and height distribution (Winker et al., 2007). The surface albedo is taken from the global SCIA-500

MACHY albedo database at 2350 nm (Butz et al., 2012). Finally, we overlaid the ensemble with the

MODIS Aqua cloud product comprising cloud top height, cloud fraction, and cloud optical depth

for the individual spatial samplings of the orbit. Hence, the measurement ensemble includes a vari-

ety of TROPOMI viewing and solar geometries, combined with realistic variations of atmospheric

scattering and trace gas abundances. Figure 11 shows examples of the atmospheric parameters in505

the ensemble.

The operational processing sequence starts with rejecting all observations with a too low signal

based on the Lambert-equivalent reflectivity defined as

LER = max
i

{
ITOA(λi)π
µ0F0(λi)

}
. (19)

where F0(λi) is the solar irradiance at spectral samplings λi. The maximum is taken over all spec-510

tral samplings within the CO fitting window. For measurements with LER > 0.03, we assess the

cloud filter described in Sect. 2.1. Figure 11 shows the clear correlation of ∆CH4 in panel (d) with

the cloud parameters in panels (a), (b) and (c). For our test orbit, about 46 % of the data passed the

cloud filter |∆CH4|< 25 %. This is significantly less than for the one year of GOSAT observations

in Fig. 2, indicating a particularly cloudy test orbit. In the next processing step, we retrieved the515

CO total column together with the effective cloud properties as described in Sect. 2.1. The final

data quality of our CO product is further enhanced by an a posteriori quality filter accepting only re-

trievals with a retrieval noise σCO < 12 %. It is important to realize that the chosen filter thresholds

give a first indication of the data processing statistics, based on the expected instrument performance.

However, during the commissioning phase of TROPOMI, a further adjustments will be required. For520

our test orbit, about 36 % of all data successfully passed the processing. Table 2 summarizes the rel-
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(a) (b)

(c) (d)

(e) (f)

Fig. 11. TROPOMI test orbit. Panel (a) cloud top height, panel (b) cloud fraction, panel (c) cloud optical depth,

panel (d) methane error of non-scattering retrieval, which is used for cloud filtering, panel (e) TM4 CO total

column, panel (f) CO retrieval bias.
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Table 2. Fraction of data to be processed during the successive processor steps for the TROPOMI test orbit

ensemble relative to the 572 442 spectra of the orbit ensemble that are filtered for SZA< 80◦.

processor step process R[%]

1 SZA < 80◦ 100

2 LER filtering 87

2 CH4cloud filtering 46

4 check convergence 38

5 retrieval noise filter 36

ative number of data that passes the individual steps. The corresponding CO retrieval bias is depicted

in panel (f) of Fig. 11, which indicates an overall good quality of our algorithm. However, a clear

feature is present in central Africa with a negative bias of about -8 %. It coincides with enhanced

CO concentrations from biomass burning regions as shown in panel (e) of the same figure. For these525

observations, the CO concentration in the atmospheric boundary layer is strongly enhanced and so

the CO profiles differs significantly in shape from that of CH4. As discussed in the previous section,

for these circumstances we expect a systematic underestimation of CO for low-cloud conditions,

which is confirmed by the orbit simulations.

For the observations that pass all quality filters, we analyzed the orbit simulations in more detail530

looking at the PDF of the CO bias together with ∆CH4. The density function of ∆CH4 is depicted

in Fig. 12 and has a maximum around zero representing clear sky scenes. The tail towards neg-

ative ∆CH4 values comprises cloudy observations and positive values indicate cases of light path

enhancements due to atmospheric scattering. The corresponding distribution of the CO bias shows

a weak dependence on ∆CH4 and so on cloud coverage. This nicely demonstrates the functional535

capability of our retrieval algorithm for a suite of different atmospheric conditions. Overall for the

orbit ensemble, the mean CO bias is 0.9 % with a standard deviation of 1.1 %, which is well within

the envisaged retrieval accuracy.

Finally, we roughly estimated the computational performance of the algorithm for a HP dc7900

SFF workstation with Intel® Core™2 Duo 1390 CPU E8400 at 3.00 GHz with a floating point rate540

of 237 and 4 GB RAM. Numerical experiments showed the computational burden of a single CO

retrieval to be 0.17 s using the Intel FORTRAN compiler. Thus to keep up with the TROPOMI data

acquisition rate, parallel processing is required on at least 22 processor cores.
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Fig. 12. Middle panel: Two-dimensional probability density function of the methane filter (∆CH4) and the

CO retrieval bias (bCO). Upper panel: One-dimensional probability density function of ∆CH4 (mean: −6.7 %,

standard deviation: 8.4 %). Right panel: One-dimensional probability density function of bCO (mean: 0.9 %,

standard deviation: 1.1 %).

25

Atmos. Meas. Tech. Discuss., doi:10.5194/amt-2016-114, 2016
Manuscript under review for journal Atmos. Meas. Tech.
Published: 25 May 2016
c© Author(s) 2016. CC-BY 3.0 License.



5 Summary and conclusions

In this paper, we presented the baseline algorithm for the operational CO data processing of the545

Sentinel 5 Precursor mission. The algorithm relies on a two-step retrieval from TROPOMI SWIR

measurements. First, we perform a non-scattering retrieval of the total amount of CH4 in the spec-

tral range 2315–2324 nm for cloud filtering. In the presence of high and optically thick clouds, the

inferred CH4 column differs significantly from its true value, which is used together with modeled

methane abundances to filter TROPOMI observations accordingly. Further processing considers550

only measurements with differences of the non-scattering methane column and the model prediction

of |∆CH4|< 25%. The CO column is inferred from SWIR measurements in the adjacent spectral

window 2324–2338 nm. In this step, we use a priori knowledge on the atmospheric methane abun-

dance to retrieve effective cloud parameters simultaneously with atmospheric CO and H2O abun-

dances. The algorithm employs a profile scaling approach to infer the CO total column amount and555

a two-stream radiative transfer model that is linearized with respect to the parameters to be retrieved.

The two-stream approach is a simple approximation to account for multiple light scattering and its

numerical implementation has a low computational cost. The vertically integrated CO column den-

sity is provided together with its retrieval noise and the column averaging kernel for each individual

measurement. This compact retrieval product is designed to address the needs of the data user, while560

taking optimal advantage of the SWIR measurements.

To demonstrate the robustness of our algorithm and the expected data quality of the CO retrieval

product, we performed an extensive sensitivity analysis for generic measurement simulations with

respect to forward model errors, instrument and calibration imperfections and uncertainties in at-

mospheric input parameters. For this purpose, we have simulated measurements with the scalar565

LINTRAN radiative transfer model, which accurately accounts for multiple scattering of solar light

by liquid water and ice clouds, aerosols and the interaction with a reflecting Earth surface. The

measurement simulations are fed through the TROPOMI instrument model to estimate the mea-

surement noise. For clear sky scenes of low signals over dark land with 3 % surface albedo and

no aerosol loading, the random error in total column CO does not exceed 11 % for SZA< 70◦ and570

in the majority of all cases the CO data precision is expected to be much better. Moreover, for

measurement simulations employing the US standard model atmosphere with a single cloud layer,

which passed the cloud filter, we diagnosed the retrieval accuracy to be < 2 %. However for cloudy

atmospheres and strongly peaked CO vertical profiles, e.g. enhanced CO concentration in the tropo-

spheric boundary layer, this bias can reach 8 %. Concerning the atmospheric input parameters, the575

largest uncertainties are introduced by model uncertainties in the methane fields. Here, we found a

nearly one-to-one correlation between the CO column error and the CH4 a priori uncertainty intro-

ducing CO biases ≤ 3 %. Uncertainties in the atmospheric temperature and pressure are of minor

relevance. To estimate the effect of an erroneous instrument calibration, we considered errors in

the full width at the half maximum of the ISRF for homogenous illumination of the instrument en-580
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trance slit, erroneous spectral calibration and additive and multiplicative radiometric errors. For the

TROPOMI instrument that satisfies the mission requirements, corresponding CO biases are < 1 %.

A heterogeneous illumination of the instrument entrance slit due to variations in cloud coverage and

surface reflection causes a distortion of the spectral instrument response, which we cannot account

for in the retrieval. This causes CO biases <±2 % with pseudo-random characteristics on larger585

spatial scales. Overall, the low error sensitivity of the CO product is also confirmed by a retrieval

analysis for a simulated orbit of TROPOMI SWIR measurements. For this purpose, we combined

a suite of different data sources to describe the observed scene in a realistic manner. Here, the CO

biases are in agreement with the generic test cases and confirm that the expected retrieval accuracy

is well within the envisaged accuracy of < 15 %.590

Although our analysis is based on an extensive set of simulated measurements, we realize the need

to further fine-tune the settings of our algorithm during the commissioning phase of the TROPOMI

instrument, aiming to provide an optimal data product during the operational phase of the Sentinel 5

Precursor mission. For this purpose, the validation of the data product with independent and accurate

ground based, balloon and aircraft measurements is essential until instrument commissioning and595

beyond during the operational phase of the mission to adequately assess and monitor data quality.
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Appendix A

TS-LINTRAN: a linearized two-stream method

This appendix summarizes the linearized two-stream radiative transfer solver TS-LINTRAN that is

based on the generalized flux method (Meador and Weaver, 1998) and the forward-adjoint pertur-600

bation theory (Marchuk, 1964; Bell and Glasstone, 1970; Box et al., 1988; Ustinov, 1991). The

solver is part of the software suite LINTRAN, which combines different linearized radiative transfer

models suited for atmospheric remote sensing (e.g. Landgraf et al., 2001; Hasekamp and Landgraf,

2002; Landgraf et al., 2002; Walter et al., 2004, 2006; Schepers et al., 2015). The model assumes

a vertically inhomogeneous atmosphere described by N homogeneous layers. Each layer is charac-605

terized by its optical properties, the optical depth τn, the single-scattering albedo ωn and the phase

function Pn with layer index n= 1, · · · ,N .

For an arbitrary layer n, the outgoing fluxes at the layer interfaces n− 1 and n can be expressed

as a function of the incoming fluxes by the matrix equation (Meador and Weaver, 1998)




Sn

F ↓n

F ↑n−1


=




a1,n 0 0

a2,n a4,n a5,n

a3,n a5,n a4,n







Sn−1

F ↓n−1

F ↑n


 (A1)610

Here, index n− 1 = 0 describes the top of the model atmosphere and index n=N indicates the

surface level. Sn is the direct solar irradiance, F ↓n and F ↑n are the diffuse downward and upward

fluxes, all defined at layer interface n. The coefficients a1,n, a2,n, a3,n, a4,n and a5,n are specific for

different flux methods, where TS-LINTRAN relies on the definition of the practical improved flux

method by Zdunkowski et al. (1979). The external boundary conditions are given as615

S0 = µ0F0

F ↓0 = 0

F ↑N =As(F
↓
N +SN ) , (A2)

where As is the surface albedo and µ0 = cos(Θ0) with the solar zenith angle Θ0. Combining the620

internal and external boundary constraints for the multi-layer system, we obtain the matrix equation

MF = C (A3)

with the sparse block-diagonal matrix M, the flux vector

F =
(
S0, F

↓
0 , F

↑
0 , S1, · · · , SN , F ↓N ,F ↑N

)T
(A4)
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and the right hand side625

C =
(
µ0F0, 0, · · · 0

)T
. (A5)

For anN -layer model atmosphere, M is a 3(N+1)×3(N+1) matrix and F and C are both vectors

of dimension 3(N +1). Due to the block diagonal structure of matrix M, Eq. (A3) can be solved by

sequential substitution of the linear equations.

With the flux vector F, we can approximate the TOA radiances ITOA in the viewing direction of630

the instrument. For this purpose we start with the expression

ITOA =
F ↑N
π

exp(−τtot/µv) +

1
µv

τtot∫

0

dτ J(τ,µv) exp(−τ/µv) , (A6)

where µv = cos(Θv) with the viewing zenith angle Θv , τ indicates optical depth, and τtot is the total

optical thickness of the atmosphere. The scattering source function J describes multiply and singly635

scattered light. We approximate the radiance within a model layers by its vertical mean and assume

its directional dependence to be isotropic both in upward and downward directions. So we obtain

F↓↑ =
F ↓↑n−1 +F ↓↑n

2
(A7)

for τn−1 < τ < τn. Hence, we can approximate Eq. (A6) by

ITOA = 〈R|F〉 , (A8)640

where the response vector R can de derived in a straight forward manner form Eq. (A6). It describes

the linear relationship between the simulated observation and the internal radiation field. Here, the

inner product of two arbitrary vectors u and v of the same dimension is defined by 〈u|v〉= uTv.

To apply the forward-adjoint perturbation theory, we solve the adjoint equation

MTF† = R , (A9)645

where F† is the adjoint flux vector and MT is the transpose of matrix M. Following the methodol-

ogy described by Ustinov (1991); Walter et al. (2004), we can calculate the derivative of the TOA

radiance with respect to an optical parameter x by

ITOA

∂x
= 〈F†|M′F〉+ 〈F†|C′〉+ 〈R′|F〉 (A10)
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Fig. 13. Slit and detector geometry with respect to the ground track of TROPOMI. Detector coordinate ρ

describes the spectral sampling dimension and σ is the spatial sampling coordinate. The scene coordinates are

x in the flight direction and y in the across flight direction and U and V represent the corresponding instrument

response in both spatial dimensions. The slit is aligned with the TROPOMI swath, such that scene heterogeneity

in the flight direction interferes with the spectral response of the instrument.

with the derivatives M′ = ∂
∂xM, C′ = ∂

∂xC, and R′ = ∂
∂xR. With C given in Eq. (A5), the deriva-650

tive C′ vanishes and so Eq. (A10) simplifies,

∂ITOA

∂x
= 〈F†|M′F〉+ 〈R′|F〉 (A11)

In general, x represents the optical depth ∆τn, the single-scattering albedo ωn, the scattering phase

function characteristics in the model layers n= 1, · · · ,N and the surface albedoAs. Equation (A11)

can be numerically implemented in a straight-forward manner, and represents the basis of the lin-655

earized TS-LINTRAN solver.
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Appendix B

The heterogeneous slit illumination: an instrument model

TROPOMI is a push-broom grating spectrometer that measures the spatial and spectral distribution

of the Earth reflected radiances using a 2-dimensional detector device. Here, the width of the en-660

trance slit is aligned with the flight direction and after dispersion by the grating, a two-dimensional

detector simultaneously collects the spectra from the 2600 km instrument swath, sampled by 256

rows of the detector. The spectral information is recorded by the 1024-pixel detector columns

with a spectral sampling distance of 0.1 nm. The instantaneous field of view of the spectrometer

is 3.4× 7 km2 (along × across flight direction) and after temporal integration over 1 s, TROPOMI665

samples the ground scene with about 7×7 km2 at the sub-satellite point. Figure B gives an overview

of the measurement principle. For the TROPOMI data analysis, we assume that the spectral and spa-

tial dimension of the radiance field can be fully disentangled. However, this is only true for ground

scenes, which reflect spatially homogenous radiances in flight direction. If the radiances varies on

spatial sub-sampling scales, we obtain interferences of the scene heterogeneity with the spectral670

response of the instrument. This appendix summarizes an instrument model that describes the ef-

fect of the heterogeneous slit illumination on the recorded spectrum using preliminary TROPOMI

instrument characteristics.

The radiometric calibrated signal S measured by TROPOMI can be simulated by

S(ρ,σ,τ) =
∫∫∫

dxdydλ U(ρ|x,λ)V (σ|y)
1
tint

tr∫

tl

dtI(x− vt,y,λ) , (B1)675

where ρ and σ describe the spectral and spatial sampling position on the 2-dimensional detector

plane, respectively, and τ is the temporal sampling. The ground coordinates are x in the along track

direction and y in the across track direction and λ denotes the wavelength of the light. Due to the

orientation of the instrument entrance slit, the x and y directions are identical to the across and along

slit direction at the instrument level, respectively. In Equation (B1), U and V denote the instrument680

response of the recorded signal in the along and across flight direction with respect to the radiation I

at position (x,y) and at wavelength λ. Here, our notation separates sampling variables and physical

coordinates by a vertical bar. The temporal integration of the received signal

〈I〉t (τ |x,y,λ) =
1
tint

tr∫

tl

dtI(x− vt,y,λ) (B2)

between tl = τ − 1
2 tint and tr = τ + 1

2 tint corresponds to a spatial integration of the radiances due685

to the motion of the satellite, where tint is the total integration time and v is the satellite velocity on

ground level.

For a homogenous illumination of the instrument across the slit direction, i.e. 〈I〉t (τ |x,y,λ) =
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〈I〉t (τ |y,λ), equation (B1) simplifies to

S(ρ,σ,τ) =
∫
dλ〈U〉x (ρ|λ)〈I〉y,t (σ,τ |λ) . (B3)690

Here, the mean intensity

〈I〉y,t (σ,τ |λ) =
∫
dyV (σ|y)〈I〉t (τ |x,y,λ) (B4)

includes the temporal integration and the convolution of the radiances with the instrument response

V across the flight direction. Moreover, we defined the integrated instrument spectral response

function in the flight direction695

〈U〉x (ρ|λ) =
∫
dxU(ρ|x,λ) , (B5)

which is extensively characterized during the on-ground calibration of the TROPOMI spectrometer.

Equation. (B3) is the baseline for our forward model in the retrieval, which assumes inherently

a homogenous illumination of the entrance slit. Thus, the differences between the measurement

simulations using Eqs. (B1) and (B3) represent a potential error source for the CO retrieval.700

To simplify the further elaboration of the response functions, we assign the sampling variable to

spatial and spectral coordinates: we appoint the spatial sampling variable σ to the barycentre y0 of

the instantaneous field of view V . Similarly, the spectral sampling ρ is assigned to the barycentre λ0

of the integrated spectral response function 〈U〉x and finally, the barycentre x0 of U for λ= λ0 is

also assigned a sampling position ρ. Obviously, the variable x0 and λ0 are not independent.705

Based on the design of the instrument and a preliminary analysis of the on-ground calibration, we

assume that the response function U can be factorized, i.e.

U(x0,λ0|x,λ) = U1(x0|x)U2(x0,λ0|x,λ) , (B6)

where

U1(x0|x) =
1

∆x
Θ
(
x−x0−

∆x
2

)
Θ
(
x0 +

∆x
2
−x
)

(B7)710

describes the geometric projection of the slit width on the Earth surface with ∆x= 3.4 km and

U2(x0,λ0|x,λ) =
1√
2πσ

exp
(
− 1

2σ2
(λ0−λ− b(x0−x))2

)
. (B8)

is the Gaussian sub-sampling spectral response function with σ = ∆w
2
√

2ln2
and the FWHM ∆w =

0.1 nm. Parameter b= 6.47 ·10−2 nm km−1 gives the shift of the spectral barycentre with across slit

position (x0−x). So for the homogenous slit illumination, the instrument spectral response function715

〈U〉x is a convolution of a Gaussian with a boxcar function and has a FWHM of 0.25 nm, according

to the instrument requirement. The response function U is illustrated in Fig. 14. For the spatial

response function across flight direction V , we assume a boxcar function of 7 km wide.
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Fig. 14. Instrument response function U(x0,λ0|x,λ) as defined in Eq. (B7) and (B8) with ∆x= 3.4 km,

∆w = 0.1 nm, and b= 6.47 · 10−2 nm km−1.

Fig. 15. Spectral features due to the inhomogenous slit illumination in percent of the continuum value. Simula-

tions are performed for a transition in flight direction from a cloudy scene to a clear sky scene at +1.8 km away

from barycentre x0. Here, the cloud is located between 2 and 3 km with a total optical depth of 10. The CO

fitting window is indicated by the pink-shadowed region.

To analysis the error of our retrieval, we use Eq. (B3) in the forward model of the retrieval, but

simulate the measurements using Eq. (B1), which introduces a spectral bias as depicted exemplarily720

in Fig. 15. Here, spectral biases range between±7 % with an error amplitude strongly depending on

the assumed scene heterogeneity.
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